Evaluación de la biodisponibilidad in vitro de compuestos bioactivos de arándanos

Carolina Ayelen Zampedri, Patricia Andrea Zampedri, Ornella Scattolaro, Luz Marina Zapata, Juan Manuel Castagnini

Resumen


Estudios in vivo e in vitro han demostrado que las antocianinas provenientes de los arándanos ejercen efectos biológicos beneficiosos sobre la salud de los consumidores. Existen métodos de análisis in vitro que permiten evaluar la estabilidad de las antocianinas en relación con la interacción de los distintos componentes de las matrices alimentarias, el pH, la temperatura, presencia de inhibidores o potenciadores de absorción y presencia de enzimas. El objetivo del trabajo fue poner a punto la metodología de digestión in vitro y evaluar la biodisponibilidad in vitro de antocianinas presentes en jugo de arándanos y un snack formulado con jugo de arándanos y manzana. Los resultados indican que si bien hay una pérdida de antocianinas durante el proceso digestivo, éstas son capaces de atravesar todas las etapas y llegar al intestino, posibilitando la liberación controlada de estos antioxidantes presentes en el jugo de arándano y en el snack desarrollado.


Palabras clave


Digestión in vitro; antocianinas; jugo de arándanos; snack

Texto completo:

PDF

Referencias


BASU, A., DU, M., LEYVA, M. J., SANCHEZ, K., BETTS, N. M., WU, M., … LYONS, T. J. (2010). Blueberries Decrease Cardiovascular Risk Factors in Obese Men and Women with Metabolic Syndrome123. The Journal of Nutrition, 140(9), 1582–1587. https://doi.org/10.3945/jn.110.124701.chokeberries

BETORET, N., ANDRÉS, A., SEGUI, L., & FITO, P. (2007). Application of safes (systematic approach to food engineering systems) methodology to dehydration of apple by combined methods. Journal of Food Engineering, 83(2), 186–192. https://doi.org/10.1016/j.jfoodeng.2007.02.018

BLANQUET, S., ZEIJDNER, E., BEYSSAC, E., MEUNIER, J. P., DENIS, S., HAVENAAR, R., & ALRIC, M. (2004). A dynamic arificial gastrointestinal system for studying the behavior of orally administrated drug dosage forms under various physiological conditions. Pharmaceutical Research, 21(4), 585–591.

BOISEN, S., & EGGUM, B. O. (1991). Critical evaluation of in vitro methods for estimating digestibility in simple-stomach animals. Nutrition Research Reviews, 4(1), 141–162. https://doi.org/10.1079/NRR19910012

BOUAYED, J., HOFFMANN, L., & BOHN, T. (2011). Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chemistry, 128(1), 14–21. https://doi.org/10.1016/j.foodchem.2011.02.052

CASTAGNINI, J. M., ZAPATA, L. M., QUINTEROS, C. F., & NOCETI, A. (2017). Multiple response optimization of blueberry juice depectinization. Ciencia Rural, 47(4), 1–9. https://doi.org/10.1590/0103-8478cr20160501

COLES, L. T., MOUGHAN, P. J., & DARRAGH, A. J. (2005). In vitro digestion and fermentation methods, including gas production techniques, as applied to nutritive evaluation of foods in the hindgut of humans and other simple-stomached animals. Animal Feed Science and Technology, 123–124, P(0), 421–444. https://doi.org/http://dx.doi.org/10.1016/j.anifeedsci.2005.04.021

FLORES, F. P., SINGH, R. K., KERR, W. L., PEGG, R. B., & KONG, F. (2014). Total phenolics content and antioxidant capacities of microencapsulated blueberry anthocyanins during in vitro digestion. Food Chemistry, 153, 272–278. https://doi.org/10.1016/j.foodchem.2013.12.063

FLORES, G., RUIZ DEL CASTILLO, M. L., COSTABILE, A., KLEE, A., BIGETTI GUERGOLETTO, K., & GIBSON, G. R. (2015). In vitro fermentation of anthocyanins encapsulated with cyclodextrins: Release, metabolism and influence on gut microbiota growth. Journal of Functional Foods, 16, 50–57. https://doi.org/10.1016/j.jff.2015.04.022

FORESTER, S. C., & WATERHOUSE, A. L. (2010). Gut metabolites of anthocyanins, gallic acid, 3-O-methylgallic acid, and 2,4,6-trihydroxybenzaldehyde, inhibit cell proliferation of caco-2 cells. Journal of Agricultural and Food Chemistry, 58(9), 5320–5327. https://doi.org/10.1021/jf9040172

GIUSTI, M. M., & WROLSTAD, R. E. (2001). Characterization and Measurement of Anthocyanins by UV-Visible Spectroscopy. In Current Protocols in Food Analytical Chemistry (pp. 1–13). John Wiley & Sons, Inc. https://doi.org/10.1002/0471142913.faf0102s00

HE, J., & GIUSTI, M. M. (2010). Anthocyanins: Natural Colorants with Health-Promoting Properties. Annual Review of Food Science and Technology, 1(1), 163–187. https://doi.org/10.1146/annurev.food.080708.100754

HIDALGO, M., ORUNA-CONCHA, M. J., WALTON, G. E., KALLITHRAKA, S., SPENCER, J. P. E., GIBSON, G. R., & PASCUAL-TERESA, S. DE. (2012). Metabolism of Anthocyanins by Human Gut Micro fl ora and Their In fl uence on Gut Bacterial Growth. Journal of Agricultural and Food Chemistry, 60, 3882–3890.

KALT, W., BLUMBERG, J. B., MCDONALD, J. E., VINQVIST-TYMCHUK, M. R., FILLMORE, S. A. E., GRAF, B. A., … MILBURY, P. E. (2008). Identification of anthocyanins in the liver, eye, and brain of blueberry-fed pigs. Journal of Agricultural and Food Chemistry, 56(3), 705–712. https://doi.org/10.1021/jf071998l

KALT, W., MCDONALD, J. E., RICKER, R. D., & LU, X. (1999). Anthocyanin content and profile within and among blueberry species. Canadian Journal of Plant Science, 79(4), 617–623. https://doi.org/10.4141/P99-009

KAY, C. D., & HOLUB, B. J. (2002). The effect of wild blueberry (Vaccinium angustifolium) consumption on postprandial serum antioxidant status in human subjects. The British Journal of Nutrition, 88(4), 389–98. https://doi.org/10.1079/BJN2002665

LIANG, L., WU, X., ZHAO, T., ZHAO, J., LI, F., ZOU, Y., … YANG, L. (2012). In vitro bioaccessibility and antioxidant activity of anthocyanins from mulberry (Morus atropurpurea Roxb.) following simulated gastro-intestinal digestion. Food Research International, 46(1), 76–82. https://doi.org/10.1016/j.foodres.2011.11.024

MCANULTY, S. R., MCANULTY, L. S., MORROW, J. D., KHARDOUNI, D., SHOOTER, L., MONK, J., … BROWN, V. (2005). Effect of daily fruit ingestion on angiotensin converting enzyme activity, blood pressure, and oxidative stress in chronic smokers. Free Radical Research, 39(11), 1241–8. https://doi.org/10.1080/10715760500306836

MCDOUGALL, G. J., FYFFE, S., DOBSON, P., & STEWART, D. (2005). Anthocyanins from red cabbage – stability to simulated gastrointestinal digestion. Phytochemistry, 66, 2540–2548. https://doi.org/10.1016/j.phytochem.2007.02.004

MOGHE, S. S., JUMA, S., IMRHAN, V., & VIJAYAGOPAL, P. (2012). Effect of Blueberry Polyphenols on 3T3-F442A Preadipocyte Differentiation. Journal of Medicinal Food, 15(5), 448–452. https://doi.org/10.1089/jmf.2011.0234

MURUGAN, R., CHANDRAN, R., & PARIMELAZHAGAN, T. (2016). Effect of in vitro simulated gastrointestinal digestion of Phoenix loureirii on polyphenolics, antioxidant and acetylcholinesterase inhibitory activities. LWT - Food Science and Technology, 74, 363–370. https://doi.org/10.1016/j.lwt.2016.07.075

NOGUER, M., CEREZO, A. B., RENTZSCH, M., WINTERHALTER, P., TRONCOSO, A. M., & GARCÍA-PARRILLA, M. C. (2008). Simulated digestion and antioxidant activity of red wine fractions separated by high speed countercurrent chromatography. Journal of Agricultural and Food Chemistry, 56(19), 8879–8884. https://doi.org/10.1021/jf8007376

NORBERTO, S., SILVA, S., MEIRELES, M., FARIA, A., PINTADO, M., & CALHAU, C. (2013). Blueberry anthocyanins in health promotion: A metabolic overview. Journal of Functional Foods, 1–11. https://doi.org/10.1016/j.jff.2013.08.015

OIDTMANN, J., SCHANTZ, M., MÄDER, K., BAUM, M., BERG, S., BETZ, M., … RICHLING, E. (2012). Preparation and comparative release characteristics of three anthocyanin encapsulation systems. Journal of Agricultural and Food Chemistry, 60(3), 844–851. https://doi.org/10.1021/jf2047515

SEERAM, N. P. (2008). Berry fruits for cancer prevention: Current status and future prospects. Journal of Agricultural and Food Chemistry, 56(3), 630–635. https://doi.org/10.1021/jf072504n

STEVENSON, D. E., COONEY, J. M., JENSEN, D. J., ZHANG, J., & WIBISONO, R. (2007). Comparison of the relative recovery of polyphenolics in two fruit extracts from a model of degradation during digestion and metabolism. Molecular Nutrition and Food Research, 51(8), 939–945. https://doi.org/10.1002/mnfr.200700087

STULL, A. J., CASH, K. C., JOHNSON, W. D., CHAMPAGNE, C. M., & CEFALU, W. T. (2010). Bioactives in Blueberries Improve Insulin Sensitivity in Obese, Insulin-Resistant Men and Women. Journal of Nutrition, 140(10), 1764–1768. https://doi.org/10.3945/jn.110.125336

TAGLIAZUCCHI, D., VERZELLONI, E., BERTOLINI, D., & CONTE, A. (2010). In vitro bio-accessibility and antioxidant activity of grape polyphenols. Food Chemistry, 120(2), 599–606. https://doi.org/10.1016/j.foodchem.2009.10.030

VRHOVSEK, U., MASUERO, D., PALMIERI, L., & MATTIVI, F. (2012). Identification and quantification of flavonol glycosides in cultivated blueberry cultivars. Journal of Food Composition and Analysis, 25(1), 9–16. https://doi.org/10.1016/j.jfca.2011.04.015

ZAFRA-STONE, S., YASMIN, T., BAGCHI, M., CHATTERJEE, A., VINSON, J. A., & BAGCHI, D. (2007). Berry anthocyanins as novel antioxidants in human health and disease prevention. Molecular Nutrition and Food Research, 51(6), 675–683. https://doi.org/10.1002/mnfr.200700002


Enlaces de Referencia

  • Por el momento, no existen enlaces de referencia


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.